KMP:字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。

KMP算法的关键就是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息。时间复杂度O(m+n)。

//***本文的讲解是建立在采取了很多其他人对算法的理解之后进行编辑的。我将会以比较白话的形式进行描述算法。

KMP算法:在两个字符串中间进行比较,寻找其中一个字符串是否包含另一个字符串,如果包含则返回包含的起始位置。

如:

char *str = "bacbababadababacambabacaddababacasdsd";
 char *ptr = "ababaca";

str有两处包含ptr
分别在str的下标10,26处包含ptr。

“bacbababadababacambabacaddababacasdsd”;\
这里写图片描述

算法说明

一般匹配字符串时,我们从目标字符串str(假设长度为n)的第一个下标选取和ptr长度(长度为m)一样的子字符串进行比较,如果一样,就返回开始处的下标值,不一样,选取str下一个下标,同样选取长度为n的字符串进行比较,直到str的末尾(实际比较时,下标移动到n-m)。这样的时间复杂度是O(n*m)

KMP算法:可以实现复杂度为O(m+n)

为何简化了时间复杂度:
充分利用了目标字符串ptr的性质(比如里面部分字符串的重复性,即使不存在重复字段,在比较时,实现最大的移动量)。
上面理不理解无所谓,我说的其实也没有深刻剖析里面的内部原因。

考察目标字符串ptr
ababaca
这里我们要计算一个长度为m的转移函数next。

next数组的含义就是一个固定字符串的最长前缀和最长后缀相同的长度。

比如:abcjkdabc,那么这个数组的最长前缀和最长后缀相同必然是abc。
cbcbc,最长前缀和最长后缀相同是cbc。
abcbc,最长前缀和最长后缀相同是不存在的。

**注意最长前缀:是说以第一个字符开始,但是不包含最后一个字符。
比如aaaa相同的最长前缀和最长后缀是aaa。**
对于目标字符串ptr,ababaca,长度是7,所以next[0],next[1],next[2],next[3],next[4],next[5],next[6]分别计算的是 aababaababababaababacababaca的相同的最长前缀和最长后缀的长度。由于aababaababababaababacababaca的相同的最长前缀和最长后缀是“”,“”,“a”,“ab”,“aba”,“”,“a”,所以next数组的值是[-1,-1,0,1,2,-1,0],这里-1表示不存在,0表示存在长度为1,2表示存在长度为3。这是为了和代码相对应。

next数组就是说一旦在某处不匹配时(下图绿色位置A和B),移动ptr字符串,使str的对应的最大后缀(红色2)和ptr对应的最大前缀(红色3)对齐,然后比较A和C。

next数组的值,就是下次往前移动字符串ptr的移动距离。比如next中某个字符对应的值是4,则在该字符后的下一个字符不匹配时,可以直接移动往前移动ptr 5个长度,再次进行比较判别。

这里写图片描述

这里写图片描述

代码解析

void cal_next(char *str, int *next, int len)
{
    next[0] = -1;//next[0]初始化为-1,-1表示不存在相同的最大前缀和最大后缀
    int k = -1;//k初始化为-1
    for (int q = 1; q <= len-1; q++)
    {
        while (k > -1 && str[k + 1] != str[q])//如果下一个不同,那么k就变成next[k],注意next[k]是小于k的,无论k取任何值。
        {
            k = next[k];//往前回溯
        }
        if (str[k + 1] == str[q])//如果相同,k++
        {
            k = k + 1;
        }
        next[q] = k;//这个是把算的k的值(就是相同的最大前缀和最大后缀长)赋给next[q]
    }
}

KMP

这个和next很像,具体就看代码,其实上面已经大概说完了整个匹配过程。

int KMP(char *str, int slen, char *ptr, int plen)
{
    int *next = new int[plen];
    cal_next(ptr, next, plen);//计算next数组
    int k = -1;
    for (int i = 0; i < slen; i++)
    {
        while (k >-1&& ptr[k + 1] != str[i])//ptr和str不匹配,且k>-1(表示ptr和str有部分匹配)
            k = next[k];//往前回溯
        if (ptr[k + 1] == str[i])
            k = k + 1;
        if (k == plen-1)//说明k移动到ptr的最末端
        {
            //cout << "在位置" << i-plen+1<< endl;
            //k = -1;//重新初始化,寻找下一个
            //i = i - plen + 1;//i定位到该位置,外层for循环i++可以继续找下一个(这里默认存在两个匹配字符串可以部分重叠)。
            return i-plen+1;//返回相应的位置
        }
    }
    return -1;  
}

测试:
    char *str = "bacbababadababacambabacaddababacasdsd";
    char *ptr = "ababaca";
    int a = KMP(str, 36, ptr, 7);
    return 0;

注意:如果str里有多个匹配ptr的字符串,要想求出所有的满足要求的下标位置,在KMP算法需要稍微修改一下。见上面注释掉的代码。

复杂度分析

利用均摊思想,是O(m+n)。

参考自

http://blog.csdn.net/starstar1992/article/details/54913261